
WebApplication Penetration Test
Final Report

Prepared for: OWASP Juice Shop

June 16th, 2023

Reference: S-230616904

TABLEOFCONTENTS

TABLEOFCONTENTS 1

EXECUTIVE SUMMARY 2

NARRATIVEANDACTIVITY LOG 3

FINDINGSANDRECOMMENDATIONS 10

RISK RATINGS 10

FINDINGS SUMMARY 11

CRITICAL RISK FINDINGS 11

1. SQL Injection Flaws 11

2. Authorization Bypass 15

HIGHRISK FINDINGS 17

3. Cross-Site Scripting Flaws 17

4. XML External Entity (XXE) 19

5. Improper Validation andHandling 22

6. Sensitive Information Disclosure 26

MEDIUMRISK FINDINGS 28

7.Weak Password Complexity Requirements 28

8. UsernameHarvesting 31

LOWRISK FINDINGS 34

9. Lack of Javascript Library Patching 34

STRATEGICGUIDANCE 36

Provide Secure Coding Training for Developers 36

ConsiderMulti-Factor Authentication 36

Formalize Application Security Practices and Requirements 36

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
1

info@secureideas.com
+1 (866) 404-7837

EXECUTIVE SUMMARY

Secure Ideas performed a penetration test of OWASP Juice Shop's web application. The scope of
this assessment, as provided byOWASP Juice Shop, was http://localhost:3000.

The following chart shows the count of findings by risk for this report:

Critical High Medium Low

2 4 2 1

Based on the findings in this report, Secure Ideas has evaluated the overall risk to OWASP Juice
Shop as it pertains to the scope of this engagement is Very High:

Secure Ideas foundmultiple critical and high-rated vulnerabilities in theOWASP Juice Shopweb
application. These weaknesses are very concerning and, if leveraged, would decrease the security
and usability of the application.

One of themost significant vulnerabilities Secure Ideas uncoveredwas the application's
susceptibility to various injection-based attacks. To illustrate this vulnerability's severity, a simple
SQL injection string was used, enabling Secure Ideas to log in as the application's administrator
account without knowing the username or password. Other examples of injection flaws are the
instances of Cross-Site Scripting vulnerabilities identified throughout the application. Cross-Site
Scripting allows attackers to havemalicious code run in the browsers of OWASP Juice Shop users.

Another significant issue discovered is in the form of an authorization bypass flaw. This security
flaw allows an attacker to exploit theOWASP Juice Shop API to create a new user with any role,
including ones having administrative privileges. This vulnerability stems from a lack of consistent
authorization checking within the API. Consistency is important in authorization validation, and
the applicationmust enforce it across all interfaces to prevent resources from being unprotected.

These, and the other issues found are outlined in the report that follows. Secure Ideas appreciates
the opportunity to work with OWASP Juice Shop to help improve its security posture.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
2

info@secureideas.com
+1 (866) 404-7837

NARRATIVEANDACTIVITY LOG

Secure Ideas began byworking through our standardmethodology of Recon→Mapping→
Discovery→ Exploitation. Since this assessment was not a black box assessment, the team
skipped the initial Recon phase, starting withMapping andDiscovery. Throughout the
engagement, we conducted several types of activities on each of the web interfaces within the
OWASP Juice Shop application. The following list details the high-level activities and
considerations carried out during the engagement. This list is not inclusive of every test
performed.

● Conductedmapping of the in-scope application
● Evaluated for commonweb flaws such as:

○ Authentication and sessionmanagement flaws
○ Authorization bypasses
○ JSONWeb Token (JWT)manipulation
○ Cross-Origin Resource Sharing (CORS) misconfigurations
○ Cross-Site Request Forgery (CSRF)
○ Testing for Server-Side Request Forgery (SSRF)
○ Ineffective / misconfigured security controls
○ Injection flaws such as Cross-Site Scripting (XSS) and SQL Injection (SQLi)
○ Fuzzing of HTTP header values
○ Testing for HTTPDesync and Cache poisoning flaws
○ Fuzzing of query and body parameters
○ Client side JavaScript static and dynamic analysis

● Testing for other high-risk items including all testable vulnerabilities listed in theOWASP
Top-10

This web-based storefront is designed for selling juice products and presents various
functionalities that are common in e-commerce platforms. During the initial mapping phase, the
scope of the application has been explored and several key components of interest were identified,
allowing for a detailed exploration of the application's functionalities, expected behaviors, and
underlying technology stack.

As part of themapping phase, we explored all of the available functionality within the application
using each account role provided. We started by creating a user account with our test email
SampleReport@SecureIdeas.com and building our profile, which is seen below.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
3

info@secureideas.com
+1 (866) 404-7837

Herewe beganmapping the application features and potentially vulnerable areas, such as login
forms, user profile pages, file uploads or input fields for sensitive information. This process was
also repeated under an administrative account, and the differences in roles and access permissions
were noted.

An observationmade rather quickly was that a potential security concern existed when creating a
user account. The application provides guidelines for password creation, but these
recommendations are not only optional to view, they are also not enforced during the account
creation process. Despite offering reasonable advice on how to establish a robust password, the
application does not mandate compliance with these guidelines. The password advice can be seen
here:

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
4

info@secureideas.com
+1 (866) 404-7837

As evidence of this lax password policy, we successfully created a user account with the overly
simplistic and highly insecure password 12345. The lack of enforced strong password criteria can
be a significant risk factor for the application's security, and this finding is further outlined in the
Findings section of this report.

Next, wewalked back through the application again, but this time from the perspective of a
malicious user or attacker. Instead of considering the expected actions from normal application
usage, we applied various techniques related to intercepting/manipulating outgoing requests or
incoming responses, passingmalformed data to input fields, and attempting to generate unusual
responses from the application.

When examining the login form, we noticed that single quotes could be used to cause errors on the
page, which is typically indicative of poor input handling. Additional probing showed that the Email
field was susceptible to SQL injection. By entering the string ' or 1=1-- in the Email field, along
with any value in the Password field, caused the application to evaluate the login condition as true.
This authenticated us as the first entry in the Users database table, which is the administrator
account. The results can be seen in the screenshot shown below that depicts the profile of the
current logged on user:

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
5

info@secureideas.com
+1 (866) 404-7837

After observing that this field can be used to inject various types of SQL commands, we began
experimenting with different queries to see what other information could be gained in this
manner. We discovered that by applying a slight modification to the query, wewere able to log
into the next account in the application. Using a query such as, ' or 1=1 and email not

like('%admin%');-- , we were able to filter out the admin account, moving the ‘login pointer’ to the
next account in the database which didn’t contain the string admin. Using some creativity, and this
query as a base template, an attacker could eventually enumerate theUsers table to harvest every
username it contained.

Due to the criticality of the SQLi, which allows an unauthenticated user to bypass the login
authorization process, Secure Ideas quickly reached out to theOWASP Juice Shop point of
contact. A brief explanation of the flawwas provided, sanitizing any specific information that
shouldn’t be sent over unsecure email, and ameeting was requested to review the findings
discoveredwithin theOWASP Juice Shop application.

While waiting for OWASP Juice Shop to respond, we continued our testing of the application.
During this time, another significant issue was discovered, which compounds the risk associated
with the SQLi flaw noted above. After logging into the account of the next user in the database, we
took some time to inspect the Change Password functionality. By default, the Change button used
to update a user’s password is only enabled when the Current Password, New Password, and Repeat
New Password fields are populated correctly. However, we discovered that by using the browser’s
f12 developer tools, a user’s password can be updatedwithout knowing the current password.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
6

info@secureideas.com
+1 (866) 404-7837

This was accomplished bymanipulating the webpage submit action. As seen below, when changing
themat-raised-button mat-primary from disabled to enabled, the password change can be processed
by the application, bypassing the Current Password field requirements.

Moving on to the API’s tested in this engagement, we found that an unauthenticated user could
submit a simple POST request, and create users with administrative privileges. In this request, no
authentication or tokens are provided, and no cookie values are given. The only requirements
found for the creation of an administrative account are the Content-Type: application/json header,
and a few basic account flags added into the body of the request. As shown in the following
screenshot, this POST request was used to successfully create an admin user account, giving it the
admin role.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
7

info@secureideas.com
+1 (866) 404-7837

Due to the critical nature of this authorization bypass, another email was sent to OWASP Juice
Shop. Ameeting was set up to go over these findings immediately as well as get additional
direction on considerations for the remainder of this test. Secure Ideas thenwalkedOWASP Juice
Shop’s technical team through the critical findings discovered, and discussed various options
related to the risk and remediation of these items. OWASP Juice Shop’s technical teamwas quick
to respond to the input provided, and have already begun a root cause analysis to determine how
to best implement fixes in accordance with OWASP Juice Shop’s internal policies and processes.
Additional effort is going to be spent on reviewing, and determining the best way to address
security concerns throughout the application’s development process.

Continuing with the testing, we utilized Burp Suite, a widely used proxy tool, to examine the
requests and responses while interacting with the application. A peculiar observation wasmade
while investigating the payment options for the deluxemembership offered by theOWASP Juice
Shop. Upon scrutinizing the developer tools on the respective page, we found that the payment
button attribute wasmarked as "disabled=true". This indicated that the application was
appropriately blocking payment attempts due to insufficient wallet balance. Our attempt to
purchase a deluxemembership with insufficient funds in the wallet is displayed below.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
8

info@secureideas.com
+1 (866) 404-7837

However, after experimenting with the code and attempting various payloads, we successfully
bypassed the payment processing logic. This manipulation allowed us to upgrade our user account
to a deluxemembership, despite having no funds in the wallet. This exploit represents a significant
vulnerability in the application's payment security, potentially enabling unauthorized premium
access. More information regarding this exploit can be found in the Findings section of this report.

Next, we embarked on amission to enumerate theOWASP Juice Shop application's directories
using a command-line tool known as dirb. Leveraging an extensive wordlist, we probed over
20,000 potential directory names. Among these, eight were accessible for browsing. One notable
finding was the directory http://localhost:3000/ftp,which provided us with access to a file server.
The files visible within this server are illustrated in the screenshot provided below.

A number of these files were easily accessible, and our investigation revealed that some did in fact
contain sensitive data. Additional insights concerning this finding are detailed in the Sensitive
Information Disclosure section of this report.

These, and the other issues discovered are outlined in the report that follows.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
9

info@secureideas.com
+1 (866) 404-7837

FINDINGSANDRECOMMENDATIONS

This report outlines the findings Secure Ideas collected from the testing, as well as Secure
Ideas’ recommendations that will assist OWASP Juice Shop in reducing its risks and
helping remove the vulnerabilities found.

RISK RATINGS

Each finding is classified as a Critical, High, Medium, or Low risk based on Secure Ideas’
professional judgment and experience providing consulting services to organizations of various
sizes and industries. In determining risk, Secure Ideas considers each of the following aspects:

● Potential Threats: This includes an assessment of potential threat actors and the level of
expertise

● Likelihood of Attack: Considerations include attacker motivations, complexity of the
attack vector, and potentially mitigating security controls

● Possible Impact: For each finding, Secure Ideas considers the potential damage to the
organization resulting from a successful attack

Each of these factors is assessed individually and in combination to determine the overall risk
designation. These assessments are based on Secure Ideas’ professional judgment and experience
providing consulting services to enterprises across the country. The following risk level
descriptions demonstrate the types of vulnerabilities designated in each category.

Critical
Vulnerabilities found that are being actively exploited in the wild and are known to lead to remote
exploitation by external attackers. These security flaws are likely to be targeted and can have a
significant impact on the business. These require immediate attention in the form of a
workaround or temporary protection. When discovered, Secure Ideas immediately stops all
testing and contacts the client for further instructions. Examples of this may include
external-facing systemswith known remote code execution exploits or remote access interfaces
with weak or default credentials.

High
Vulnerabilities found that could lead to exploitation by internal or remote attackers. These
security flaws are likely to be targeted and can have a significant impact on the business. These
flawsmay require immediate attention for temporary protection, but often requiremore systemic
changes in security controls. Some examples include command injection flaws, use of end-of-life
software, and default credentials.

Medium

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
10

info@secureideas.com
+1 (866) 404-7837

Vulnerabilities or services found that could indirectly contribute to amoremajor incident; or that
are directly exploitable to an extent that is somewhat limited in terms of availability and/or impact.
This class of vulnerability is unlikely to lead to a significant compromise on its own, however can
pose a substantial danger when combinedwith others. Some examples include weak transport
layer security on a sensitive transaction, insufficient network segmentation, or the use of
vulnerable software libraries.

Low
Vulnerabilities or services that, when found alone, are not directly exploitable and present little
risk, but may provide information that facilitate the discovery or successful exploitation of other
flaws. Examples include disclosure of server software versions and debuggingmessages.

FINDINGS SUMMARY
The following table summarizes the findings. Each finding is broken out in detail by risk
immediately after the summary table.

Finding Risk

1. SQL Injection Flaws Critical

2. Authorization Bypass Critical

3. Cross-Site Scripting Flaws High

4. XML External Entity (XXE) High

5. Improper Validation andHandling High

6. Sensitive Information Disclosure High

7.Weak Password Complexity Requirements Medium

8. UsernameHarvesting Medium

9. Lack of Javascript Library Patching Low

CRITICAL RISK FINDINGS

1. SQL Injection Flaws

Industry Standards

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
11

info@secureideas.com
+1 (866) 404-7837

OWASP Top 10 A3:2021: Injection

NIST 800-53 SI-10: Information Input Validation

Summary

When data enters a web application without being properly sanitized, it may expose the
application to several categories of vulnerabilities. One of these categories is the injection of
StructuredQuery Language (SQL) by a third party. This type of attack is commonly referred to as
SQL injection.

SQL injection occurs when data is inserted or appended into an application input parameter, and
that input is used to dynamically construct a SQL query. When aweb application fails to properly
sanitize data, which is passed on to dynamically create SQL statements, it is possible for an
attacker to alter the construction of back-end SQL statements.

Some of the potential risks include:

● Loss of sensitive or confidential data
● Altered sensitive or confidential data
● Bypass of authentication
● Bypass of authorization
● Access to underlying Operating System
● Further attacks against users of the application (XSS, CSRF)

Oneway to exploit this type of vulnerability is via Blind SQL Injection. Blind SQL injection is
identical to a standard SQL Injection attack, except that when an attacker attempts to exploit an
application, rather than getting a useful error message, the attacker instead gets a generic page
specified by the developer. This makes exploiting a potential SQL Injection attackmore difficult
but not impossible. An attacker can still gain access to data by asking a series of True and False
questions through SQL statements.

Finding

​Secure Ideas discovered that the login page of the Juice-shop application is vulnerable to a classic
form of SQL Injection as well as Blind SQL Injection. This is due to the use of unsanitized user
supplied input.
​
​In the first example, using the parameters ‘ = OR 1=1-- , as the username and any password, Secure
Ideas was able to login as the Admin account. Considering Admin was the first user listed in the
application, it was therefore used due to the exploit payload.
​

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
12

info@secureideas.com
+1 (866) 404-7837

​As shown in the following screenshots, the admin account was the first account listed in the
application. Additional accounts could be accessed by using ' or 1=1 and email not like('%admin%');--
and so on.
​

​

Next, Secure Ideas was able to perform a Blind SQL Injection by inserting ''))-- into the query
parameter of a GET request within the product search page of the application. This effectively
manipulated the application's SQL command to ignore the original filtering conditions, thereby
returning all the products from the database.

This resulted in a Christmas Super-Surprise-Box (2014 Edition) being revealed as part of the available
products, as seen in the Response below.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
13

info@secureideas.com
+1 (866) 404-7837

The product, in this case the Christmas Super-Surprise-Box, is not readily accessible through the
application's available product options. Secure Ideas was then able to use the intercept
functionality in Burp Suite to add a Green Smoothie to the shopping basket. Intercepted requests
were forwarded until the POST request responsible for adding items to the basket is reached. At
this point, Secure Ideas was able tomanipulate the Javascript in the request, replacing the
ProductId of the "Green Smoothie" with the ProductId of the Christmas Super-Surprise-Box, which is
'10'. Upon forwarding themodified request and revisiting the basket, Secure Ideas confirmed that
the shopping cart had now added the unavailable item.

Recommendations
Secure Ideas recommends that OWASP Juice Shop use parameterized queries when interacting with a
database backend. Parameterized queries are a method where the query is created within the application
code without the values needed. Placeholders are used and during execution replaced with the values
from the user or the transaction. Currently parameterized queries are the strongest protection from SQL
injection attacks.

If for some reason, parameterized queries are not possible, Secure Ideas recommends that OWASP Juice
Shop perform input validation to prevent this form of attack. Developers should ensure that the
application validates that the input from the user is of exactly the type that the developer intends. For
example, if OWASP Juice Shop only expects alphanumeric characters in the input, then the application
should perform input filtering to reject anything else. This is considered a whitelist approach.

Further, Secure Ideas recommends that OWASP Juice Shop properly handle all SQL statements, and
commands within the code so that DBMS error messages are not returned directly to the browser.

OWASP Juice Shop developers can also use a common security library to perform input filtering and
output encoding. Implementations should followOWASP best practices for preventing this vulnerability,

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
14

info@secureideas.com
+1 (866) 404-7837

regardless of whether or not OWASP Juice Shop chooses to use a library for these tasks.
https://owasp.org/www-project-cheat-sheets/cheatsheets/SQL_Injection_Prevention_Cheat_She
et.html

2. Authorization Bypass

Industry Standards

OWASP Top 10 A1:2021: Broken Access Control

NIST 800-53 AC-3: Access Enforcement

Summary

Authorization bypass is a flaw in software or a hole in security planning where a user or an
attacker is able to access data or functionality for which the user is not authorized. This
vulnerability does not require amalicious attacker to cause increased risk to a business; themere
fact that unauthorized users have access to a business infrastructure increases risks to the
company. The core issue in authorization bypass is a lack of validation within the application.
When theweb application accepts input from a user and uses that input to retrieve data or
provide access, it is critical that the application validate that the user actually has permission to
perform that action. When this validation does not happen, or is able to be fooled, the application
is vulnerable to attack.

Risks businesses face from an authorization bypass include the introduction of bugs to code via
users’ mistakes, an attacker gaining access to administrative portions of the application, or loss of
important business-related data to a data thief.

Finding

Secure Ideas has found that theOWASP Juice Shop application contains an authorization bypass
flaw. During the testing Secure Ideas was able to create an admin account with an
unauthenticated session.

In theOWASP Juice Shop API, Secure Ideas discovered that an attacker or malicious user could
create a new user with the role of admin.

The following description explains how Secure Ideas was able to perform this attack.
1. Create a Post request in Postman API testing tool to https://localhost:3000/api/Users
2. Add a line in the Body of the request using the following statement

{“email”:”admin”,”password”:”admin”,”role”,”admin”}
3. Send Request to the api endpoint
4. Visit login page to login using new admin account

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
15

info@secureideas.com
+1 (866) 404-7837

As shown below, the new user has been createdwith administrative privileges:

Recommendations
Secure Ideas recommends the authorization bypass flaw be remediated immediately due to the exposure
of administrative access via the API.

The first step in remediating this flaw involves changing the application to validate authorization
information. OWASP Juice Shopmust modify the code of the application to verify that a user is allowed
to view the information before returning it to the browser. If the user is not authorized, the application
should return an error message instead of the information requested.

The second step is to never trust user supplied input, or expect that the client side code is protected from
manipulation. Every authorization should be validated by backend services, and exposure of this
validation process should be hidden as much as possible to any client side process. This will help ensure
that any user input is handled safely.

The next step is to include a logging andmonitoring systemwithin the application to detect attempts to
access other members’ information. These logs can then be reviewed to determine if someone is
attempting to attack the application.

Any time a user attempts to access information or functionality that is restricted from them, the
application can alert staff members of the attempt. This can be performed in a number of ways. The
simplest is the application sends an email or SMSmessage to OWASP Juice Shop support staff. OWASP

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
16

info@secureideas.com
+1 (866) 404-7837

Juice Shop could also modify the application to sendmessages to a central monitoring solution, if one has
been implemented within the OWASP Juice Shop infrastructure. If modifying the application in this way
is not preferred, OWASP Juice Shop can also use a script that parses the log files for messages of
exploitation attempts. The script can then perform the action chosen to alert the OWASP Juice Shop
staff.

HIGHRISK FINDINGS

3. Cross-Site Scripting Flaws

Industry Standards

OWASP Top 10 A1:2021: Broken Access Control

NIST 800-53 AC-3: Access Enforcement

Summary

Not filtering untrusted user-supplied input may expose a web application to several categories of
vulnerabilities. One of these categories is the injection of HTML or JavaScript code by a third
party. This type of attack has been generally referred to as “Cross-Site Scripting” or XSS.

One commonway of exploiting this is with a social-engineering attack vector and a crafted link.
This would exploit a flaw in one ormore parameters in the URL and query string. When the target
user follows the link, themalicious code executes in the target’s browser, within the context of the
vulnerable page.

Cross-site scripting flaws are typically classified by two attributes: whether they are persisted and
whether they are reflected. When a persisted exploit is used, the payload is stored, and executes
again on subsequent visits to the vulnerable page. The classic example is server-side persistence
in the database. Because the data in the databasemay be shared between users, it is possible for
an attacker to simply add the payload through a shared data field in order to circumvent the need
for social engineering. This is predicated on the attacker being able to add the payload from either
a legitimate account or an unauthenticated context. Evenwhen social engineering is necessary to
introduce the payload, if it is in shared data it can still reach other users in addition to the original
target. Persistence is not necessarily always on the server, however, and could instead be stored in
cookies set by JavaScript. In moremodern applications, the localStorage and indexedDB client-side
APIs may be used as well.

The other attribute used for classification is whether it is a reflected flaw. If it is reflected, the flaw
is in the handling of input that is sent to the server and returns in a response. The
database-persisted example does this, and could therefore be considered both reflected and

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
17

info@secureideas.com
+1 (866) 404-7837

persisted. An unpersisted example would be an error message returned from the server that
unsafely includes a value from the input.

In all cases, themalicious scripts are executed in a context that appears to have originated from
the targeted site. This gives the attacker full access to the document retrieved, providing almost
unlimited control over the victim’s experience using the application. Awide variety of options are
available for crafting an effective exploit, whichmay incorporate some of the following:

● Sending application data to a server controlled by the attacker
● Using the victim’s session to access additional data or functionality
● Stealing cookies that are not protected with the httponly flag
● Manipulating the view presented to the victim for a social engineering purpose, such as

faking a session timeout to prompt for a login or convincing the user to install something
● Stealing data from sensitive input boxes, such as account credentials or credit card

information
● Launching attacks against or harvesting data from other applications open to interaction

with the current domain through a cross-origin resource sharing (CORS) policy, potentially
using the victim’s cookie-stored credentials

● Changing links on the page to include the cross-site scripting payload in other pages as the
user navigates the site

Finding

Secure Ideas discovered that OWASP Juice Shop’s applications are vulnerable to cross-site
scripting (XSS) due to the application’s use of input within the response to the user. Many of the
flaws identifiedwere persisted through the database, andmany could be exploited by an
unauthenticated attacker without relying on a direct social engineering attack such as phishing.

One instance of a Cross-Site Scripting (XSS) vulnerability that Secure Ideas observed can be found
in the application's search functionality, which is susceptible to these types of attacks. An attacker
can execute JavaScript in the context of the application's webpage by injecting script code through
the search bar.

A payload <iframe src="javascript:alert(`XSS_SecureIdeas`)">was entered into the search bar of the
OWASP Juice Shop application. Upon submission of the input, the JavaScript payloadwas
executed, demonstrating that the user input was not properly sanitized or escaped before being
processed by the application. The successful execution of the payload indicates a Document
ObjectModel (DOM) XSS vulnerability. The screenshot below is what the victim browser would
see.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
18

info@secureideas.com
+1 (866) 404-7837

Recommendations
Secure Ideas recommends that OWASP Juice Shop perform both input validation, and output encoding to
prevent this form of attack. Developers should ensure that the application validates that the input from
the user is of exactly the type that the developer intends. For example, if OWASP Juice Shop only expects
alphanumeric characters in the input, then the application should perform input filtering to reject
anything else. Output encoding provides additional protection by ensuring that hostile data, such as
JavaScript, will not be sent to the browser. This way if an attack gets past the input filtering, it would be
defanged or made non-malicious by the output encoding.

OWASP Juice Shop developers can use a common security library to perform this input filtering and
output encoding. Implementations should followOWASP best practices for preventing this vulnerability,
regardless of whether or not OWASP Juice Shop chooses to use a library for these tasks. These
recommendations can be found at:
https://owasp.org/www-project-cheat-sheets/cheatsheets/Cross_Site_Scripting_Prevention_Chea
t_Sheet.html

4. XML External Entity (XXE)

Industry Standards

OWASP Top 10 A5:2021: Security Misconfiguration

NIST 800-53 SI-15: Information Output Filtering

Summary

The software processes an XML document that can contain XML entities with URIs that resolve to
documents outside of the intended sphere of control, causing the product to embed incorrect
documents into its output. Attackers can exploit vulnerable XML processors if they can upload
XML or include hostile content in an XML document, exploiting vulnerable code, dependencies or

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
19

info@secureideas.com
+1 (866) 404-7837

integrations. These flaws can be used to extract data, execute a remote request from the server,
scan internal systems, perform a denial-of-service attack, as well as execute other attacks. The
business impact depends on the protection needs of all affected applications and data.

Finding

Secure Ideas found that theOWASP Juice Shop application is receiving untrusted XML andmay be
vulnerable to XML External Entity (XXE) attacks. An XML payloadwas generated to exploit an
XML External Entity (XXE) vulnerability, which allowed access to and extraction of data from the
system.ini file on the server. The POC payload is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///C:/Windows/system.ini" >]>

<trades>
<metadata>
<name>Secure Ideas</name>
<trader>
<foo>&xxe;</foo>
<name>K. Johnson</name>

</trader>
<units>24</units>
<price>13.99</price>
<name>Picanha</name>
<trader>
<name>Jason Gillam</name>

</trader>
<units>CAD</units>
<price>buck</price>

</metadata>
</trades>

This was accomplished by uploading the crafted XML file at http://localhost:3000/#/complain
through the Complaint dialog box, using the Invoice: Choose File feature. This is demonstrated in the
screenshot below.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
20

info@secureideas.com
+1 (866) 404-7837

Upon submitting the complaint, the server processed the XML payload, and the response
inadvertently disclosed the content of the system.ini file. This demonstrates the server's
susceptibility to XXE attacks, as it allowed the XML parser to process external entities defined
within the XML document, thus revealing internal system information.

The potential for a security risk arises from the fact that the XML External Entity (XXE) attack was
able to access and extract information from the system.ini file. If the XXE attack could access this
file, it might also be able to access other files that contain more sensitive data.

The system.ini file is a configuration file inWindows that is primarily used tomanage the system
settings in theWindows 3.x andWindows 9x series of operating systems. The security risk here is
less about the specific information in these visible sections of the system.ini file, andmore about
the broader file access capabilities that the successful XXE attack demonstrates. The extracted
data is shown below.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
21

info@secureideas.com
+1 (866) 404-7837

Recommendations
Secure Ideas recommends that OWASP Juice Shop Implement positive (“whitelisting”) server-side input
validation, filtering, or sanitization to prevent hostile data within XML documents, headers, or nodes.
Disabling both XML external entity and DTD processing and in all XML parsers in the application is also
recommended. Developers should also verify that XML or XSL file upload functionality validates incoming
XML using XSD validation or replace the processor with a library that does . For python, we recommend
defusedxml (https://pypi.org/project/defusedxml/)

5. Improper Validation andHandling

Industry Standards

OWASP Top 10 A04:2021: Insecure Design

NIST 800-53 SI-10: Information Input Validation

Summary

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
22

info@secureideas.com
+1 (866) 404-7837

Improper validation and handling is a flawwhere an application doesn't adequately check or
manage the data it's working with. This can relate to user input, system processes, or interaction
with resources. Essentially, it's a failure of the application to ensure data or actions are valid and
appropriate, which can lead to a range of security issues.

Improper validation and handling can allow both accidental and intentional unauthorized activity.
Evenwithout malicious intent, the simple occurrence of unvalidated or improperly handled data
can pose significant risks to a business. The root cause of such vulnerabilities is typically a lack of
adequate validation within the application's functionality.

When an application takes input from a user to perform actions or retrieve data, it's crucial that
the application confirms the input and the action are legitimate and safe. If the application fails to
conduct these checks, or if the checks can be bypassed, it becomes vulnerable.

Potential risks from improper validation and handling include inadvertent introduction of bugs
into the system, an attacker manipulating the application's functionality in unintendedways, or
exposure of sensitive data to unauthorized individuals. These risks underline the importance of
thorough validation and error handlingmechanisms inmaintaining the security and integrity of an
application.

Finding

Secure Ideas has found that theOWASP Juice Shop application contains an improper validation
and handling flaw. During testing, Secure Ideas found that a DeluxeMembership upgradewas
possible without payment.

Initially, when browsing to http://localhost:3000/#/payment/deluxe the payment options were
displayed correctly, with a noted account balance of $0 in the wallet, as seen in the accompanying
screenshot.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
23

info@secureideas.com
+1 (866) 404-7837

Through an examination of the webpage using developer tools, Secure Ideas observed that the
payment button attribute was set to "disabled=true", suggesting that the systemwas correctly
disallowing payment attempts due to the absence of funds in the wallet. The relevant code snippet
and the corresponding screenshot are included below.

Next, the "disabled" attribute from the payment buttonwasmanually removed, which enabled the
payment button to be clicked. As a result, a POST request was initiated, which predictably
returned an error message, "Insufficient funds in wallet". This behavior is appropriate as the
"paymentMode" was set to "wallet".

Subsequently, the request was captured using the Burp Suite Repeater tool. In this intercepted
request, the "paymentMode" parameter wasmanipulated by replacing "wallet" with an empty
string, and then the request was resent.

This resulted in a successful upgrade to the deluxemembership, confirmed by the application's
response - "Congratulations! You are now a deluxemember!" Despite the wallet balance being

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
24

info@secureideas.com
+1 (866) 404-7837

zero, theOWASP Juice Shop application allowed the account upgrade, indicating a vulnerability in
the payment processing logic. This successful response is displayed in the screenshot below.

Recommendations
Secure Ideas recommends that OWASP Juice Shop implement system hardening guidelines. Any OWASP
Juice Shop system handling sensitive user actions should adopt a dual-layered security approach. The
first layer involves comprehensive server-side input validation for all client-submitted data. This protocol
ensures that all received data adheres to the expected formats and values before proceeding with any
further processing. It should be designed to reject any inputs that are suspicious or deviate from expected
norms, thereby reducing the risk of potential manipulative activities.

The second layer should establish rigorous server-side authorization checks for any actions that could
potentially impact OWASP Juice Shop user resources or privileges. These checks should authenticate user
identity, validate account status, and confirm sufficient resources are available before any transaction is
authorized. This approach, merging robust input validation with extensive authorization checks, forms a
vital protective layer against unauthorized actions and potential security threats.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
25

info@secureideas.com
+1 (866) 404-7837

6. Sensitive Information Disclosure

Industry Standards

OWASP Top 10 A5:2021: Security Misconfiguration

NIST 800-53 PE-19: Information Leakage

Summary

Many systems deal with various degrees of sensitive information, such as usernames, passwords,
email addresses, phone numbers, confidential documents, andmuchmore. What is considered
sensitive information is typically contextual to the system’s purpose. However, in cases in which
non-public information can be accessed by unauthorized users, there is risk present to the
company and its users. Such information can be very useful to an attacker in numerous ways, in
some cases allowing attackers to gain a foothold within a company’s network, cloud infrastructure,
or other resources depending upon the nature of the information disclosed.

Sensitive information disclosure does not typically require an attacker to have bypassed some
security control, instead it is typically caused by somemishandling of the information by the
system, or amisconfiguration that would allow the information to be accessed in a context in
which it should not have been.

The following is a non-exhaustive list of some common examples of sensitive information
disclosure:

● Social Security Numbers
● Sensitive documents in a public file share
● Employee identification numbers and other types of identifiers
● Database connection strings or any other types of credentials
● Telephone numbers

Finding

During testing, Secure Ideas effectively employed dirb to probe for concealed directories. This
effort led to the discovery of several directories that were not initially evident during the
applicationmapping stage, as illustrated in the subsequent screenshot.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
26

info@secureideas.com
+1 (866) 404-7837

When browsing to http://localhost:3000/ftp, it was discovered that there was visibility into several
of the files on this server. The file labeled acquisitions.md contains sensitive information about
upcoming acquisitions that are clearly confidential, as evident in the screenshot provided below.
Secure Ideas has obfuscated the sensitive information tomaintain privacy.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
27

info@secureideas.com
+1 (866) 404-7837

Additionally, Secure Ideas found a directory at http://localhost:3000/support/logswhich contains
the access.log file corresponding to today's activity. This log provides a comprehensive record of all
the requests made to the server. Each request contains potentially sensitive information,
including client IP addresses and user agent data. It's important to note that such information
could be leveragedmaliciously by potential attackers, underscoring the need for proper handling
and protection of these log files. The accessible directory and access.log file is displayed below.

Recommendations
Secure Ideas recommends that OWASP Juice Shop examine these files thoroughly and evaluate whether
all of the disclosed information is indeed sensitive and determine which elements should rightfully be
present. Consider restricting the access to said information by avoiding coding practices that might
expose file system details. For example, avoid displaying directory listings, and avoid using predictable file
and directory names.

MEDIUMRISK FINDINGS

7.Weak Password Complexity Requirements

Industry Standards

OWASP Top 10 A1:2021: Broken Access Control
A5:2021: Security Misconfiguration
A7:2021: Identification and Authentication Failures

NIST 800-53 AC-3: Access Enforcement

Summary
One of the aspects tested during the penetration test, was the password complexity requirement
of theOWASP Juice Shop applications. For most applications, the password is the single factor of
authentication that grants access to all other information. For this reason, it is imperative that
users create strong passwords that are difficult to attack. Unfortunately, most users do not
understand the importance of strong passwords or how to create them. Application developers

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
28

info@secureideas.com
+1 (866) 404-7837

must take the responsibility to develop applications in such a way that requires users to create
passwords that canwithstand common password-guessing attacks.

There are three common types of password guessing attacks. The first is a brute-force attack in
which attackers try every combination of every letter in order to eventually find the correct
password. Dictionary attacks utilize a list of common passwords such as Password1 and abc123.
The third type of attack is a hybrid attack in which the attacker uses common passwords that have
beenmangled with brute-force techniques. For instance, the attacker might try the word Secret
followed by every possible 2-digit numeral and symbol combination. This can be successful when
users tack on numbers and symbols to the end of their password to comply with password
requirements.

Finding
Secure Ideas found that although theOWASP Juice Shop application does attempt to provide
guidelines for secure passwords, it does not adequately enforce the use of complex password
configurations. The password complexity criteria are weaker than recommended for an
application of this type.
TheUser Registration page shown below displays password advice, however, Secure Ideas found
that the application gives this advice as optional, and does not enforce this advice.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
29

info@secureideas.com
+1 (866) 404-7837

Further investigation revealed that the application permits the use of simple passwords such as
"password" and "12345". Passwords of this nature are typically included in readily available
dictionaries. It is worth noting that such simple password strings are often tested against systems
with account lockout mechanisms due to their frequent occurrence as account passwords in web
applications. The screenshot provided below displays a generated authentication token and
successful login for the user SampleReport@SecureIdeas.com, whose password has been entered as
password.

Recommendations
OWASP Juice Shop should strengthen the password requirements within the application. While it does
perform some complexity checking, OWASP Juice Shop should increase these checks based on industry
standards. Passwords should contain at least fifteen alphanumeric characters, with preference given to
passphrase. Additionally, passwords should avoid any of the following flaws:

● Contains less than fifteen characters.
● The password is a word found in a dictionary (English or foreign).
● Contain personal information such as birth dates, addresses, phone numbers, or names

of family members, pets, friends, and fantasy characters.
● Contain common simple patterns such as aaabbb, qwerty, zyxwvuts, or 123321.
● Are some version ofWelcome123, Password123, orChangeme123.
● Any of the above spelled backwards.
● Any of the above preceded or followed by a digit (e.g., secret1, 1secret).

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
30

info@secureideas.com
+1 (866) 404-7837

Secure Ideas also recommends that OWASP Juice Shop review options for adding multi-factor
authentication to the application. Traditional user credentials are easily reused by attackers once stolen.
By applying a second form of authentication, such as something the user knows, something the user is, or
something the user has, OWASP Juice Shop can ensure that user accounts are muchmore difficult to
compromise. In addition, less complex passwords pose less risk when additional authentication factors
are required.

Finally, OWASP Juice Shop should review the application’s logging to confirm that failed login attempts
are recorded into an error log. Logs should be reviewed daily to detect user accounts with a higher than
normal amount of failed login attempts.

8. UsernameHarvesting

Industry Standards

OWASP Top 10 A5:2021: Security Misconfiguration

NIST 800-53 CA-6: Security Authorization

Summary
Username harvesting is a flaw that allows an attacker to verify that a username is valid and in use
within the system. This is often found on forms such as login, registration, and forgot password. It
is caused by the system reacting somehow differently for a valid usernamewhen compared to an
invalid username. Attackers look for these differences in handling when attacking systems. Often
the difference is an obvious error message that tells the user they have entered an invalid or valid
username. Other times the flaw can arise through subtleties in the way that a site processes the
submission and returns the response.

Once an attacker discovers this flaw, they can use various tools and scripts to harvest large lists of
valid usernames. With a list of usernames, the attacker has several options for attackingOWASP
Juice Shop’s systems and users. One option is to attempt logging into these harvested accounts
using common passwords or brute force techniques. Another option is to use the harvested
usernames to lock-out large swaths of users, in effect performing a denial of service attack.
Attackers could also leverage the usernames in a social engineering attack. Usernames provide a
valid piece of information when attempting to social engineer either customers or staff members
of OWASP Juice Shop systems. This is evenmore of a risk when the username is also the user’s
email address.

Finding
During the testing process, Secure Ideas discovered a UsernameHarvesting vulnerability was
discovered in OWASP Juice Shop. The application was found to be providing different responses
when attempting to reset passwords for existing users versus non-existing users.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
31

info@secureideas.com
+1 (866) 404-7837

When a password reset was initiated for an existing user, the application responded by allowing
the input for a security question, in this caseMothers maiden name, as seen in the screenshot
below.

Conversely, when attempting the same action with a non-existent user, theOWASP Juice Shop
application does not prompt for any security questions and does not provide any input fields to
enter such information.

Analysis of the related requests and responses using the Burp Suite proxy tool reveals this
disparity. The application responds by prompting for a security question when a request is made
with the valid email address SampleReport@SecureIdeas.com. In contrast, when a request is
associated with a non-existent user, such as fakeuser@test.com, the response received comprises
an empty body, indicating that no data is present. This difference in responses can be exploited by
an attacker to validate the existence of a specific usernamewithin the system. A screenshot of
these differences is shown below.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
32

info@secureideas.com
+1 (866) 404-7837

Valid User SampleReport@SecureIdeas.com Request and Response

Non-Existent User fakeuser@test.com Request and Response

Recommendations
Secure Ideas recommends that whenever possible, OWASP Juice Shop should return the same response
whether or not a username exists within the authentication system. In situations such as account
registration, when the user needs to be notified that a username is already in use, the application should
employ other defensive techniques such as rate-limiting.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
33

info@secureideas.com
+1 (866) 404-7837

LOWRISK FINDINGS

9. Lack of Javascript Library Patching

Industry Standards

OWASP Top 10 A6:2021: Vulnerable and Outdated Components

NIST 800-53 SI-2: Flaw Remediation
SA-15 (7): Automated Vulnerability Analysis
SA-22: Unsupported System Components

Summary
Patches are software changes that close loopholes and vulnerabilities in the applications code.
Whether it is an application, a programming library, or amanagement program, businesses need to
keep patches up to date to prevent known threats from being used in a successful attack against
them.

Finding
While performing web application penetration tests on theOWASP Juice Shop application, Secure
Ideas attempts to determine what version of common Javascript libraries are running.
Determining the specific version of libraries allows the tester to find vulnerable and exploitable
versions whichmay result in further access to the system. Furthermore, the jQuery project team
has indicated that jQuery 1.x and 2.x major versions are end-of-life as of July 2018. Some of these
versions have known vulnerabilities, including/such as cross-site scripting flaws.

During the testing, Secure Ideas determined that theOWASP Juice Shop application is running
several older versions of Javascript libraries that have known vulnerabilities.

Some examples are:

● jquery version 2.2.4
○ http://localhost:3000/score-board/socket.io/
○ http://localhost:3000/support
○ http://localhost:3000/assets/public/images/uploads/%F0%9F%98%BC-

● jquery version 3.3.1
○ http://localhost:3000/profile

Many of the library patches released are built to fix security issues found in the product. By not
applying these patches, OWASP Juice Shop exposes the systems to attack frommalicious users or
external attackers. In the case of these unpatched Javascript libraries, there are published

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
34

info@secureideas.com
+1 (866) 404-7837

vulnerabilities in each of them; however, OWASP Juice Shop is only truly at risk if using the
vulnerable part of the library.

Recommendations
Secure Ideas recommends that OWASP Juice Shop deploy application library security patches as soon as
possible. In addition Secure Ideas recommends that OWASP Juice Shop develop a process to monitor
which applications are using which Javascript libraries and track these libraries on a regular basis so that
they are kept up-to-date. This may be facilitated by retire.js, a free and open source tool for
cross-referencing Javascript libraries with known vulnerabilities. This tool is available in several flavors
(command line, browser extension, proxy plugin, etc…) and can be downloaded here:
https://retirejs.github.io/retire.js/ .

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
35

info@secureideas.com
+1 (866) 404-7837

STRATEGICGUIDANCE

Secure Ideas performed aweb application penetration test for OWASP Juice Shop. Through
testing this application Secure Ideas was able to gather a general sense of OWASP Juice Shop’s
security posture andwould like tomake the following strategic considerations available to
OWASP Juice Shop:

Provide Secure Coding Training for Developers
Finding and remediating flaws after the fact is themost expensive way for organizations to handle
security vulnerabilities. It takes a considerable amount of time and effort for developers to
consider the discovered issues, review the code, make the appropriatemodifications, work
through quality assurance testing, and then roll out the changes. Alternatively, training developers
to understand security flaws and avoid vulnerabilities during the development process is much
more efficient and effective. Unfortunately most developer training venues do not adequately
teach secure coding. During this assessment Secure Ideas found evidence that suggests many of
OWASP Juice Shop’s developers are not properly trained to avoid commonmistakes. OWASP
Juice Shop should consider providing secure coding training to all developers on a regular basis.

ConsiderMulti-Factor Authentication
Multi-Factor authentication is recommended for employees to use when accessing
sensitive systems such as VPN, domain controllers and other critical or sensitive
resources. The Factors of theMulti-Factor Authenticationmechanism fall into three
categories: knowledge (something they know), possession (something they have) and
inherence (something they are). A wide range of systems exist that can be implemented
directly into theWindows Server authentication systems as well as Linux servers and
applications. One common system found in corporate environments is the RSA SecurID
solution. Another popular system in smaller-scale environments is available fromDuo
Security or Google Authenticator. Whichever solution is chosen, themost important
aspect of implementingMulti-Factor Authentication is to ensure that at least two different
Factors are required to gain access and not simply the same Factor requiredmultiple times
(i.e., password plus fingerprint instead of multiple passwords.)

Formalize Application Security Practices and Requirements
In many organizations, applicationsmake up a substantial portion of the exposed threat surface.
Application teamswithin the organization have varying levels of security training, experience, and
proficiency. This presents a challenge in ensuring that all applications consistently implement
security controls to a similar standard. Any significant variation should be driven by the individual
business cases, with necessary exceptions and risk acceptance being deliberately discussed and
documented. To address this challenge, an organizationmay develop or adopt a comprehensive
software security model to ensure that consistent processes and controls are in place to protect
the applications against attackers. Some commonmodels are theMicrosoft Security Development

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
36

info@secureideas.com
+1 (866) 404-7837

Lifecycle (MS-SDL)1 and theOWASP Software AssuranceMaturityModel (SAMM)2. While
practices like these inherently add overhead to the architectural design and development
processes, they also empower development teams to take ownership of the application security,
and to take amore active role in maturing the organization’s security posture.

Secure Ideas found that OWASP Juice Shop is not consistently adhering to common best practices.
This suggests that OWASP Juice Shop’s current application security requirements are not
sufficiently defined or are not comprehensive enough. OWASP Juice Shop should consider
formalizing a comprehensive set of processes and requirements to ensure consistent adherence to
best practices.

Confidential and Proprietary
All Rights Reserved

Secure Ideas, LLC
37

info@secureideas.com
+1 (866) 404-7837

